Bobo.id - Teman-teman, setelah sebelumnya kamu belajar tentang perbandingan dalam persamaan linear, selanjutnya kita akan masuk ke materi perbandingan senilai.
Perbandingan senilai yaitu perbandingan dari dua atau lebih variabel. Jika suatu variabel bertambah, maka variabel lain juga ikut bertambah.
Rumus Perbandingan Senilai
Jika y adalah fungsi dari x dan hubungan antara variabel x dan y dinyatakan sebagai y = ax, maka dikatakan bahwa y berbanding lurus dengan x.
y = ax
Perlu diperhatikan bahwa a adalah konstanta yang tidak boleh 0. Dalam hal ini, a disebut konstanta perbandingan.
Ketika y berbanding lurus dengan x, jika x ≠ 0, maka nilai y/x tetap.
Nah, supaya teman-teman semakin mudah memahaminya, kita akan langsung mencoba cara menghitungnya dari contoh soal berikut. Yuk, simak!
1. Untuk fungsi-fungsi yang dapat dinyatakan dengan persamaan berikut ini, manakah yang menyatakan y berbanding lurus dengan x? Temukan konstanta perbandingannya!
(a) y = 8x
(b) y = x/4 (x per 4)
Baca Juga: Contoh Soal Matematika Menyelesaikan Perbandingan pada Persamaan Linear
(c) y = –10x
Pembahasan:
Seperti yang dijelaskan di atas y berbanding lurus dengan x dengan rumus y = ax, maka carilah yang bentuknya sama dengan rumus tersebut.
(a) y = 8x menunjukkan bahwa y berbanding lurus dengan x, dengan nilai konstanta 8.
(c) y = –10x menunjukkan bahwa y berbanding lurus dengan x, dengan nilai konstanta -10.
2. Diketahui bahwa y berbanding lurus dengan x, dan ketika x = 2, maka y = –8. Nyatakanlah y dalam x menggunakan persamaan. Selain itu, tentukan nilai y ketika x = 3.
Pembahasan:
Langkah pertama, cari nilai konstanta a dengan mensubtitusi nilai x = 2 dan y = –8.
y = ax
-8 = a × 2
-8 : 2 = a
Baca Juga: Contoh Soal dan Pembahasan Matematika Menghitung Persamaan Linear
-4 = a
Kita telah menemukan nilai a yaitu -4, selanjutnya subtitusikan nilai a dengan x = 3 menggunakan rumus perbandingan senilai untuk mencari y.
y = ax
y = -4 × 3
y = -12
3. Ketika y berbanding lurus pada x, nyatakanlah y dalam x menggunakan x = –3, y = 15. Kemudian, hitunglah nilai y ketika x = –4.
Pembahasan:
Langkah pertama, cari nilai konstanta a dengan mensubtitusi nilai x = –3 dan y = 15.
y = ax
15 = a × (–3)
15 : –3 = a
–5 = a
Kita telah menemukan nilai a yaitu –5, selanjutnya subtitusikan nilai a dengan x = –4 menggunakan rumus perbandingan senilai untuk mencari y.
y = ax
y = (–5) × (–4)
y = 20
---
Kuis! |
Bagaimana cara mencari konstanta? |
Petunjuk: Cek halaman 2! |
Tonton video ini, yuk!
----
Ayo, kunjungi adjar.id dan baca artikel-artikel pelajaran untuk menunjang kegiatan belajar dan menambah pengetahuanmu. Makin pintar belajar ditemani adjar.id, dunia pelajaran anak Indonesia.